
About

The CAN source files (CAN2.c & CAN2.h) and this document (CAN.doc / CAN.pdf) are copyright John

Harding (Copyright 2012). These files are intended for use with MMBasic or one of its derivatives (such

as DMBasic). Geoff Graham is the overall author of MMBasic.

The information herein is provided in accordance with License X. Please see “License.txt” which should

have been distributed with the source code. If using a compiled version then the license of the compiled

version supersedes the original source license. (Note, if you alter and or compile the CAN2.c / CAN2.h

files you must comply with the licensing as-is or seek a different licensing agreement from the copyright

holder).

The “normal distribution method” is as a compiled HEX file intended for a Duinomite build of MMBasic

4.x or later. The normal distribution is licensed following Geoff Graham’s license requirements for his

MMBasic (in brief: the hex can be used for any purpose, whereas source code is available for personal

use by using the form at: http://mmbasic.com/source.html)

These commands are designed as a replacement to the original CAN commands that were provided with

DMBasic. These new commands provide finer grained control of the CAN interface (most noticeably the

ability to filter channels and the dynamic management of memory). These new commands also break

the “licensing deadlock” created by incompatible licensing of the two versions of the BASIC interpreter

(DMBasic by Olimex and MMBasic by Geoff Graham). As such they can be included in the official

MMBasic distribution by Geoff Graham.

For backward compatibility it is possible to implement the original CAN commands as BASIC subroutines

in MMBasic 4.0. It should also be straightforward to port these commands into DMBasic – however, to

exist alongside the original commands some care will need to be taken to change the memory usage.

Also, the latest (at time of writing) version of DMBasic is 2.7 and does not include support for BASIC

subroutines.

These commands are a complete re-write of the CAN interface. Any similarity between these source

files and the originals is because:

(a) Both versions fit into the same MMBasic defined infrastructure.

(b) Both versions use Microchips Peripheral Library (plib).

(c) Both versions are attempting to solve the same problem (provide a high level interface for

accessing the DuinoMite Mega CAN hardware).

However, without the DuinoMite Mega by Olimex and Frank Voorburg’s original CAN commands this

implementation would never have been written. In turn, without Geoff Graham’s MaxiMite the

DuinoMite wouldn’t have existed. Thanks guys!

Peace, love and plug-ins,
John Harding, September 2012.
http://priuschat.com/threads/yapip-recreating-peefs-approach.109724/

http://mmbasic.com/source.html
http://priuschat.com/threads/yapip-recreating-peefs-approach.109724/

CAN Commands Overview

These commands provide access to the CAN hardware available on the DuinoMite Mega. The

DuinoMite Mega exposes one of the two CAN modules on the PIC microprocessor. A CAN module

supports up to 32 channels, each channel can be configured to transmit or receive data. For receiving

data the CAN module writes received messages into a different FIFO buffer for each channel. One entry

in a FIFO buffer is 16 bytes long (4 address bytes, 4 length bytes, 8 data bytes). These commands allow

the user to specify the number of records in each FIFO buffer and the internals keep track of the

memory requirements and automatically allocates memory from the available heap. A command is

provided to free the allocated memory when the CAN interface is no longer required.

Note that CAN channels are numbered from 0 to 31 and that, per the Microchip documentation, CAN

channels should be configured contiguously from 0 upwards. I.e. if 5 channels are required use channels

0, 1, 2, 3 & 4; and not 1, 2, 3, 4 & 5 or 3, 5, 10, 22, 31 or any other combination.

The CAN module is first configured by placing it in configuration mode and then issuing configuration

commands. When the desired configuration is set up then the CAN module is enabled. Once enabled

the RX and TX commands can be used to receive and send data on the bus. Once the CAN module is

finished it should be disabled and the memory associated with the FIFO buffers should be freed (for

example at the end of the application)

An RX channel can either have a filter for a specific id or be configured to receive all messages. In the

latter case the user can request the id of the received command and then perform processing based on

the id of the command. However, on a CAN bus with moderate to high utilization, more reliable

operation will be achieved by setting up multiple channels with each channel filtering for one id of

interest. This is because of the relatively small buffer sizes and the relatively slow operation of the

BASIC interpreter – when trying to receive all messages into one buffer the buffer overruns and data is

lost. Furthermore, when a channel is being filtered for a single ID it may be appropriate to set the FIFO

buffer size to just 1 record, especially if the goal is to update a single value display. This will always give

you the most up-to-date data.

The examples provided were designed for (and tested on) a second generation Toyota Prius (Model

years 2004 – 2009). For a feature-rich application please see: http://priuschat.com/threads/my-

duinomite-mega-canview-v4-equivalent-project.112429/ which provides details of a complete

application developed by John Lopez.

Throughout this overview I have referred to “CAN commands” (plural). In fact there is only one true

CAN command – the other commands are “sub-commands” from this one master. By structuring the

commands this way we have less impact on the limitation for the number of top-level/master

commands that MMBasic can support.

http://priuschat.com/threads/my-duinomite-mega-canview-v4-equivalent-project.112429/
http://priuschat.com/threads/my-duinomite-mega-canview-v4-equivalent-project.112429/

The commands are as follows:

Informational
CAN

CAN PRINTCONFIG

Setup
CAN CONFIG ok

CAN SETSPEED speed, ok

CAN ADDRXCHNL channel_num, can_id, msg_type, buffer_size, ok

CAN ADDTXCHNL channel_num, buffer_size, ok

CAN ENABLE ok

Read / Write
CAN RX channel_num, can_id, msg_type, length, data(), ok

CAN RX channel_num, data(8), ok

CAN TX channel_num, can_id, msg_type, length, data(), ok

Teardown
CAN DISABLE ok

CAN FREE

Note: Examples are provided after the command documentation rather than including snippets for each
individual command. This allows the reader to see all the commands in context.

Command: CAN
Category: Informational
Arguments: None
Description: Displays a list of the available commands.

Command: CAN PRINTCONFIG
Category: Informational
Arguments: None
Description: Displays details of the current configuration. The details displayed are module status
(online or offline), speed and configured channels.

Command: CAN CONFIG ok
Category: Setup
Arguments:
 ok (output) – 1 if successful, 0 otherwise
Description: Clears any pre-existing configuration and puts the CAN module into configuration mode.

Command: CAN SETSPEED speed, ok
Category: Setup
Arguments:
 speed (input) – baud rate in kbps from 10,000 to 1,000,000
 ok (output) – 1 if successful, 0 otherwise
Description: Sets the baud rate of the CAN connection. Value provided is bits per second with a
minimum of 10kbps and a maximum of 1Mbps.

Command: CAN ADDRXCHNL channel_num, can_id, msg_type, buffer_size, ok
Category: Setup
Arguments:
 channel_num (input) – a CAN channel from 0 to 31
 can_id (input) – a CAN id to filter for (set to 0 to receive all CAN messages)
 msg_type(input) – 0 for standard 11-bit IDs, 1 for extended 29-bit IDs
 buffer_size(input) – size of the FIFO buffer for this channel expressed as number of records
 ok (output) – 1 if successful, 0 otherwise
Description: Configures the specified channel as a receive channel. To filter for an individual id provide
the CAN id of interest, to receive all messages pass in a zero id. If you’re monitoring a single id (with this
channel) and want to act on the latest data set the buffer size to 1. Larger buffer sizes can be set to
capture more data – note that no indication is given when buffer overrun occurs (the oldest data is
simply discarded).

Command: CAN ADDTXCHNL channel_num, buffer_size, ok
Category: Setup
Arguments:
 channel_num (input) – a CAN channel from 0 to 31
 buffer_size(input) – size of the FIFO buffer for this channel expressed as number of records
 ok (output) – 1 if successful, 0 otherwise
Description: Configures the specified channel as a transmit channel. Normally a buffer size of 1 is
sufficient. However, larger sizes allow you to separate the construction and buffering of transmissions
from the actual transmission.

Command: CAN ENABLE ok
Category: Setup
Arguments:
 ok (output) – 1 if successful, 0 otherwise
Description: Once the configuration is complete call this command to put the CAN module into normal
operating mode and ready to receive or transmit data.

Command: CAN RX channel_num, data(8), ok
Category: Read/Write
Arguments:
 channel_num (input) – a CAN channel from 0 to 31 for a channel previously configured for RX
 data(8) (output) – an array to receive the data from the FIFO record
 ok (output) – 1 if successful, 0 if no data available or other failure occurs
Description: This command is intended to read the data only from a channel that has been previously
configured to monitor for a given ID (hence the id is already known and doesn’t need to be retrieved
from the buffer).

Command: CAN RX channel_num, can_id, msg_type, length, data(), ok
Category: Read/Write
Arguments:
 channel_num (input) – a CAN channel from 0 to 31 for a channel previously configured for RX
 can_id (output) – the CAN id of the message read from the FIFO buffer
 msg_type (output) – the message type of the message read from the FIFO buffer
 length (output) – the amount of data read (between 0 and 8 bytes)

data(8) (output) – an array to receive the data from the FIFO record
 ok (output) – 1 if successful, 0 if no data available or other failure occurs
Description: This command is intended to read information from the FIFO buffer of a channel that has
been previously configured to receive all messages – hence the need to provide variables to retrieve the
full information about the message.

Command: CAN TX channel_num, can_id, msg_type, length, data(), ok
Category: Read/Write
Arguments:
 channel_num (input) – a CAN channel from 0 to 31 for a channel previously configured for RX
 can_id (input) – the CAN id to send
 msg_type (input) – the message type being sent (0=SID, 1=EID)
 length (input) – the amount of data being sent (between 0 and 8 bytes)

data(8) (input) – an array of data bytes to send (values between 0 and 255)
 ok (output) – 1 if successful, 0 otherwise
Description: Places data into the FIFO buffer for this channel. Data will be sent on the bus when the
CAN module detects the bus is available (i.e. not busy).

Command: CAN DISABLE ok
Category: Teardown
Arguments:
 ok (output) – 1 if successful, 0 otherwise
Description: Puts the module into offline mode, but does not destroy the configuration. This can be
used to stop all processing of CAN messages while another processor intensive task takes place. CAN
ENABLE can then be called to re-enable the pre-existing configuration.

Command: CAN FREE
Category: Teardown
Arguments: none
Description: Takes the module off line and frees all memory associated with the existing configuration.

EXAMPLE ONE – Minimal example of reading one channel
' (c) John Harding, 2012 - see license.txt for

' licensing details

' Example designed for Gen 2 Prius

' Configures connection speed to 500kbps and

' monitors for CAN id 52Ch when data is received

' we calculate the ECT from the appropriate data

' bytes.

' Note that the period of this message is

' approximately 1Hz

Cls

Dim ok

Dim data(8)

Dim ect

CAN CONFIG ok

CAN SETSPEED 500000, ok

CAN ADDRXCHNL 0,&h52C,0,1,ok

CAN ENABLE ok

Timer = 0

Do

 If (Inkey$ = "q") Then Exit

 CAN RX 0,data(0),ok

 If (ok=1) Then

 Print Timer ": ECT = " (data(1)/2)

 EndIf

Loop

CAN FREE

End

EXAMPLE TWO – Example of reading all channels and displaying just one (but don’t do this!)
' (c) John Harding, 2012 - see license.txt for

' licensing details

' Example designed for Gen 2 Prius

' Configures connection speed to 500kbps and

' configures a channel to receive all messages

' into a FIFO buffer with 32 records.

'

' When a message with id 52Ch is received

' we calculate the ECT from the appropriate data

' bytes.

' Note that the period of this message is

' approximately 1Hz but that we receive many

' wrong ids before we get the message we want

' This example is provided to contrast with

' example 1. It is suggested to use example 1

' as the basis for your code.

Dim ok

Dim data(8)

Dim id

Dim typ

Dim length

CAN CONFIG ok

CAN SETSPEED 500000, ok

CAN ADDRXCHNL 0, 0, 0, 32, ok

CAN ENABLE ok

Timer=0

Do

 q$ = Inkey$

 If (q$="q") Then Exit

 CAN RX 0, id, typ, length, data(0), ok

 If (ok=1) Then

 If (id=&H52C) Then

 Print " "

 Print Timer ": " Hex$(id) " : " length " : ECT= " data(1) / 2 "

C"

 Else

 Print Timer ": " Hex$(id) " ";

 Endif

 EndIf

Loop

CAN FREE

End

EXAMPLE THREE – More complex example of reading several channels

Watch this space!

EXAMPLE FOUR – Subroutine for requesting PIDs

Watch this space!

EXAMPLE FIVE – Backward compatibility subroutines

Watch this space!

